Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface

Author:

Kim Jinsub1,Jun Seongchul2,Lee Jungho1,Godinez Juan2,You Seung M.3

Affiliation:

1. Extreme Mechanical Engineering Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea e-mail:

2. Mechanical Engineering Department, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 e-mail:

3. Mem. ASME Professor Mechanical Engineering Department, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 e-mail:

Abstract

The effect of surface roughness on the pool boiling heat transfer of water was investigated on superhydrophilic aluminum surfaces. The formation of nanoscale protrusions on the aluminum surface was confirmed after immersing it in boiling water, which modified surface wettability to form a superhydrophilic surface. The effect of surface roughness was examined at different average roughness (Ra) values ranging from 0.11 to 2.93 μm. The boiling heat transfer coefficients increased with an increase in roughness owing to the increased number of cavities. However, the superhydrophilic aluminum surfaces exhibited degradation of the heat transfer coefficients when compared with copper surfaces owing to the flooding of promising cavities. The superhydrophilic aluminum surfaces exhibited a higher critical heat flux (CHF) than the copper surfaces. The CHF was 1650 kW/m2 for Ra = 0.11 μm, and it increased to 2150 kW/m2 for Ra = 0.35 μm. Surface roughness is considered to affect CHF as it improves the capillary wicking on the superhydrophilic surface. However, further increase in surface roughness above 0.35 μm did not augment the CHF, even at Ra = 2.93 μm. This upper limit of the CHF appears to result from the hydrodynamic limit on the superhydrophilic surface, because the roughest surface with Ra = 2.93 μm still showed a faster liquid spreading speed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3