Multi-Element Unstructured Analyses of Complex Valve Systems

Author:

Ahuja Vineet1,Hosangadi Ashvin1,Shipman Jeremy1,Daines Russell2,Woods Jody2

Affiliation:

1. Combustion Research and Flow Technology, Inc., Pipersville, PA 18947

2. Jacobs Sverdrup NASA Test Operations Group, NASA Stennis Space Center, MS 39529

Abstract

The safe and reliable operation of high-pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high-fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with submodels for grid adaption, grid movement, and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high-pressure feed systems and have been difficult to deal with using traditional computational fluid dynamics methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets, etc. In the paper, we will discuss performance losses related to cryogenic control valves and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the “choking-like” behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of a pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system-wide phenomena leading to an undesirable chatter at high flow conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3