An Experimental Investigation of Properties of Nanofluid and Its Performance on Thermosyphon Cooled by Natural Convection

Author:

Das Sidhartha1,Giri Asis2,Samanta S.2,Kanagaraj S.3

Affiliation:

1. Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology, Itanagar 791109, India e-mail:

2. Department of Mechanical Engineering, North Eastern Regional Institute of Science and Technology, Itanagar 791109, India

3. Department of Mechanical Engineering, IIT Guwahati, Guwahati 781039, India

Abstract

An attempt is made here to characterize thermal conductivity of water-based Al2O3 nanofluid and then use the same in a circular finned thermosyphon (TPCT) to measure its thermal performance. The concentration of Al2O3 nanofluid is varied within 0.05–0.25% by volume. The thermal conductivity of nanofluid is increased with concentration of Al2O3 nanoparticles as well as with temperature. A maximum of 26.7% enhancement of thermal conductivity is observed at 45 °C for 0.25% concentration by volume of nanofluid in comparison to that of de-ionized (DI) water. Variations of surface tension and contact angle of Al2O3 nanofluid are also compared with DI water. One of the smallest TPCT with different heat inputs (4 W, 8 W, and 12 W) and different inclinations (30 deg, 45 deg, 60 deg, and 90 deg) is tested for different concentration of Al2O3 nanofluid, which will find application in smaller electronic units. It is found that use of nanofluid decreases the wall temperature distribution of TPCT. Thermal resistance of TPCT decreases whenever TPCT is filled with nanofluid and a maximum of 36.4% reduction in thermal resistance is noted for 0.25% volume of nanoparticles at 4 W with an inclination of 60 deg. It is also found that performance of TPCT is higher at 60 deg inclination compared to other inclinations, especially for lower heat input.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal Characteristics of Nano-fluid-Based Wickless Heat Pipe for Electronic Thermal Management;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

2. Enhancing performance of polymer-based microchannel heat exchanger with nanofluid: A computational fluid dynamics-artificial neural network approach;South African Journal of Chemical Engineering;2023-10

3. Experimental study on the effect of graphene and Al2O3 nanofluids in a miniature flat heat pipe;Thermal Science and Engineering Progress;2023-07

4. Influence of Geometrical Changes in an Adiabatic Portion on the Heat Transfer Performance of a Two-Phase Closed Thermosiphon System;Energies;2021-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3