A Study on Mixed Convection Flow in a Lid-Driven Cavity Filled With Micropolar Nanofluid by Considering Brownian Motion

Author:

Hadizade Amin1,Haghighi Poshtiri Amin1

Affiliation:

1. Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht 4199613776, Iran e-mail:

Abstract

The mixed convective heat transfer of a micropolar nanofluid in a square lid-driven cavity has been numerically studied. The lid is thermally insulated, the side walls are kept cold, and the bottom wall is kept hot with sinusoidally thermal boundary condition. The governing equations were solved by finite volume method using the SIMPLE algorithm. The effect of Grashof number (102–105), the volume fraction of nanoparticles (0.0–0.1), and micropolarity (0.0–2.0) has been investigated on the heat transfer of Al2O3–water nanofluid. Also, the variable model was used to calculate fluid viscosity and thermal conductivity coefficient of the nanofluid. The results showed that an increase in Grashof amplifies the buoyancy force and enhances the Nusselt number. Also, an increase in vortex viscosity at low Grashof numbers strengthens the forced convection and increases the Nusselt number over the bottom wall. However, at Gr = 105, the increase in vortex viscosity up to K = 1.0 leads to a decrease in the amount of heat transfer, but its further increase entails the increase in heat transfer. Although the addition of nanoparticles to the fluid improves heat transfer rate, the extent of improvement at nonzero K values is lower than that in the Newtonian fluid. The comparison of the average Nusselt number computed on the hot wall under two different states of temperature-depended thermo-physical properties and constant thermo-physical properties reveals that their difference is more significant for the Newtonian fluid especially at higher volume fraction.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3