Convective Instability in the Thermal Entrance Region of a Horizontal Parallel-Plate Channel Heated from Below

Author:

Hwang G. J.1,Cheng K. C.2

Affiliation:

1. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, China

2. Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada

Abstract

An investigation is carried out to determine the conditions marking the onset of longitudinal vortex rolls due to buoyant forces in the thermal entrance region of a horizontal parallel-plate channel where the lower plate is heated isothermally and the upper plate is cooled isothermally. Axial heat conduction is included in an analytical solution for the Graetz problem with fully developed laminar velocity profile. Linear-stability theory based on Boussinesq approximation is employed in the derivation of perturbation equations. An iterative procedure using high-order finite-difference approximation is applied to solve the perturbation equations and a comparison is made against the conventional second-order approximation. It is found that for Pr ≥ 0.7 the flow is more stable in the thermal entrance region than in the fully developed region, but the situation is just opposite for small Prandtl number, say Pr ≤ 0.2. Graphical results for the critical Rayleigh numbers and the corresponding disturbance wavenumbers are presented for the case of Pe → ∞ with Prandtl number as a parameter and the case of air (Pr = 0.7) with Peclet number as a parameter in the range of dimensionless axial distance from the entrance between x = 0.001 and 4 × 10−1.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3