Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities

Author:

Kuo C.-J.1,Peles Y.1

Affiliation:

1. Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

The ability of reentrant cavities to suppress flow boiling oscillations and instabilities in microchannels was experimentally studied. Suppression mechanisms were proposed and discussed with respect to various instability modes previously identified in microchannels. It was found that structured surfaces formed inside channel walls can assist mitigating the rapid bubble growth instability, which dominates many systems utilizing flow boiling in microchannels. This, in turn, delayed the parallel channel instability and the critical heat flux (CHF) condition. Experiments were conducted using three types of 200×253μm2 parallel microchannel devices: with reentrant cavity surface, with interconnected reentrant cavity surface, and with plain surface. The onset of nucleate boiling, CHF condition, and local temperature measurements were obtained and compared in order to study and identify flow boiling instability.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3