Alternate Scales for Turbulent Flow in Transitional Rough Pipes: Universal Log Laws

Author:

Afzal Noor1,Seena Abu1

Affiliation:

1. Department of Mechanical Engineering, Aligarh University, Aligarh 202002, India

Abstract

In transitional rough pipes, the present work deals with alternate four new scales, the inner wall transitional roughness variable ζ=Z+∕ϕ, associated with a particular roughness level, defined by roughness scale ϕ connected with roughness function ▵U+, the roughness friction Reynolds number Rϕ (based on roughness friction velocity), and roughness Reynolds number Reϕ (based on roughness average velocity) where the mean turbulent flow, little above the roughness sublayer, does not depend on pipes transitional roughness. In these alternate variables, a two layer mean momentum theory is analyzed by the method of matched asymptotic expansions for large Reynolds numbers. The matching of the velocity profile and friction factor by Izakson-Millikan-Kolmogorov hypothesis gives universal log laws that are explicitly independent of pipe roughness. The data of the velocity profile and friction factor on transitional rough pipes provide strong support to universal log laws, having the same constants as for smooth walls. There is no universality of scalings in traditional variables and different expressions are needed for various types of roughness, as suggested, for example, with inflectional-type roughness, monotonic Colebrook-Moody roughness, etc. In traditional variables, the roughness scale, velocity profile, and friction factor prediction for inflectional pipes roughness are supported very well by experimental data.

Publisher

ASME International

Subject

Mechanical Engineering

Reference52 articles.

1. A Critical Discussion of Turbulent Flow in Channels and Circular Tubes;Millikan

2. Rough-Wall Turbulent Boundary Layer;Raupach;Adv. Appl. Mech.

3. Turbulent Flow Over Rough Walls;Jimenez;Annu. Rev. Fluid Mech.

4. Turbulent Boundary Layers in Adverse Pressure Gradients;Clauser;J. Aeronaut. Sci.

5. Boundary-Layer Characteristics for Rough and Smooth Surfaces;Hama;Trans Society of Naval Architecture and Marine Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3