Affiliation:
1. Department of Engineering Mechanics, University of Wisconsin, Madison, WI 53706
Abstract
This paper is an extension of work by Drugan et al. (1982) who derive the stress and deformation fields at the tip of a plane strain tensile crack that grows quasi-statically, under general nonsteady conditions, in an elastic-ideally plastic solid. Here I perform a higher-order analysis of the near-tip fields for this growing crack problem. My principal objectives are to determine the radial variation of the near-tip stress field and elucidate the structure of the deformation fields in the 90-deg sector ahead of the growing crack; this information was not provided by the lowest-order solution of Drugan et al. (1982). I also derive a crucial asymptotic expression for the normal radial component of the deformation rate tensor in a moving “centered fan” plastic sector, which was given without complete proof by Rice (1982). The analysis presented herein differs from typical perturbation analyses in that I am able to derive the higher-order structure of the continuum fields rather than having to assume expansions for them. Among the results, normal polar components of deviatoric stress are shown to vary as (ln r)−1, while the in-plane polar shear component varies as (ln r)−2, for small r > 0 in moving “centered fan” plastic sectors, r denoting distance from the (moving) crack tip. Further, in-plane strains proportional to ln|ln r| as r → 0 appear not to be precluded in the 90-deg sector ahead of the growing crack.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献