An Analysis of Large Strain Viscoplasticity Problems Including the Effects of Induced Material Anisotropy

Author:

Chandra A.1,Mukherjee S.2

Affiliation:

1. Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, AZ 85721

2. Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853

Abstract

This paper examines the modeling of large shearing of solids that exhibit induced anisotropy during inelastic deformation. The “traditional” approach uses integration of material rates of certain tensors which are obtained from Jaumann rates of these tensors delivered by a material constitutive model. This leads to erroneous results (spurious oscillations) in a simple shear example. Several previous authors have suggested resolutions to this dilemma based on modification of the constitutive model — usually based upon changing the interpretation of the tensor rates delivered by a constitutive model. This paper draws attention to another aspect of the modeling process — that of obtaining the components of tensors such as the Cauchy stress in a global, space-fixed basis, from the objective rates of these tensors as delivered by the material constitutive model. In essence, it is suggested here that the elastic rotation rather than the spin should be used to achieve the above objective. The rotation idea is first discussed in the context of a simple shear example. This philosophy is then incorporated in a general purpose two-dimensional boundary element method (BEM) formulation and computer program. Numerical results for the simple shear problem, using the rotation idea, are obtained both by direct integration and from the general BEM computer program.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3