Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector

Author:

Charjouei Moghadam Mohammad1,Edalatpour Mojtaba2,Solano Juan P.3

Affiliation:

1. Department of Industrial Engineering, University of Bologna, Forli 47121, Italy

2. Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056 e-mail:

3. Departamento de Ingeniería Térmica y de Fluidos, Universidad Politécnica de Cartagena, Campus de Excelencia Internacional Regional “Campus Mare Nostrum,” Cartagena 30202, Spain

Abstract

In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entropy generation, and pressure drop points of view are being presented for various prominent parameters, namely volume fraction, nanoparticles diameter, Richardson and Reynolds numbers. According to the simulations, Nusselt number decreases as the Richardson number or volume fraction of the nanofluid rises, whereas heat transfer coefficient experiences an augmentation when volume concentration and the Richardson number surge. Also, data reveal that total entropy generation rate of the system declines when the alumina/water nanofluid is utilized inside the system as the volume fraction or the Richardson number increases. Additionally, it is found that increasing the nanoparticle volume concentration or the Richardson number diminishes the pressure drop considerably, whereas friction factor substantially proliferates as the Richardson number or volume fraction rises. Eventually, employment of larger alumina nanoparticles mean diameter eventuates in providing lower Nusselt number and apparent friction factor while it increases the pressure drop and heat transfer coefficient. Finally, comparing the efficiency of the presented FPSC design with those available in the literature shows a superior performance by the present design with its maximum occurring at 2 vol %.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3