Abstract
Abstract
This paper presents a systematic method for deriving the minimum number of equations of motion for multibody system containing closed kinematic loops. A set of joint or natural coordinates is used to describe the configuration of the system. The constraint equations associated with the closed kinematic loops are found systematically in terms of the joint coordinates. These constraints and their corresponding elements are constructed from known block matrices representing different kinematic joints. The Jacobian matrix associated with these constraints is further used to find a velocity transformation matrix. The equations of motions are initially written in terms of the dependent joint coordinates using the Lagrange multiplier technique. Then the velocity transformation matrix is used to derive a minimum number of equations of motion in terms of a set of independent joint coordinates. An illustrative example and numerical results are presented, and the advantages and disadvantages of the method are discussed.
Publisher
American Society of Mechanical Engineers
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献