EXPERIMENTAL INVESTIGATION OF TIP DESIGN EFFECTS ON THE UNSTEADY AERODYNAMICS AND HEAT TRANSFER OF A HIGH SPEED TURBINE

Author:

Cernat Bogdan C.1,Lavagnoli Sergio2

Affiliation:

1. Chaussee de Waterloo 72 Rhode-St-Genese, Brabant-Flamande 1640 Belgium

2. Turbomachinery and Propulsion Department Chaussee de Waterloo 72 Rhode Saint Génese, 1640 Belgium

Abstract

Abstract While modern engine manufacturers devote significant efforts to the development of reliable and efficient machines, the introduction of novel, optimized components in the hot gas path represents a risky opportunity. Accurate experimental and numerical data are critical to assess the impact of new technologies on the harsh engine environment. The present study addresses the impact of a selection of high-performance rotor blade tips on the aerodynamic and heat flux field of a high pressure turbine (HPT) stage. A combined numerical and experimental approach is employed to characterize the interaction of the tip leakage flow with the rotor secondary flows and the casing heat transfer mechanisms for each individual tip geometry. The turbine stage is tested at engine-scaled conditions in the rotating turbine facility of the von Karman Institute. For the present study, the turbine rotor is operated in rainbow configuration to allow the simultaneous testing of multiple blade tip geometries. RANS simulations are employed to predict the aerodynamic and thermal field of the individual profiles using test-calibrated boundary conditions. Isothermal computations are performed at different wall temperatures to compute the tip-dependent adiabatic wall temperature and heat transfer coefficient. Low-order models are developed to represent the over-tip thermal field and the driving heat transfer mechanisms. The time-resolved outlet flow is characterized using a vortex tracking technique and high frequency aerodynamic measurements to identify the rotor secondary flow structures.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduction of heat transfer and improvement of film cooling effect on squealer tip with multi-rib design concept;Journal of Mechanical Science and Technology;2023-08

2. Modifications of double-rim geometry to improve thermal performance of squealer tip in a turbine stage;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3