Assessment of MULTALL as Computational Fluid Dynamics Code for the Analysis of Tube-Axial Fans

Author:

Danieli Piero1,Masi Massimo2,Delibra Giovanni3,Corsini Alessandro3,Lazzaretto Andrea1

Affiliation:

1. Department of Industrial Engineering, University of Padova, Padova 35131, Italy

2. Department of Management and Engineering, University of Padova, Vicenza 36100, Italy

3. Department of Aerospace Engineering, «Sapienza» University of Roma, Roma 00184, Italy

Abstract

Abstract This work deals with the application of the open-source computational fluid dynamics (CFD) code MULTALL to the analysis of tube-axial fans. The code has been widely validated in the literature for high-speed turbomachine flows but not applied yet to low-speed tutbomachines. The aim of this work is to assess the degree of reliability of MULTALL as a tool for simulating the internal flow in industrial axial-flow fan rotors. To this end, the predictions of the steady-state air-flow field in the annular sector of a 315 mm tube-axial fan obtained by MULTALL 18.3 are compared with those obtained by two state-of-the-art CFD codes and experimental data of the global aerodynamic performance of the fan and the pitch-wise averaged velocity distribution downstream of the rotor. All the steady-state Reynolds-averaged Navier–Stokes (RANS) calculations were performed on either fully structured hexahedron or hexa-dominant grids using classical formulations of algebraic turbulence models. The pressure curve and the trend of the aeraulic efficiency in the stable operation range of the fan predicted by MULTALL show very good agreement with both the experimental data and the other CFD results. Although the estimation of the fan efficiency predicted by MULTALL can be noticeably improved by the more sophisticated state-of-the-art CFD codes, the analysis of the velocity distribution at the rotor exit supports the use of MULTALL as a reliable CFD analysis tool for designers of low-speed axial fans.

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

1. Design Guidelines for Low Pressure Axial Fans Based on CFD-Trained Meta-Models;Bamberger,2015

2. Throughflow Calculations for Transonic Axial Flow Turbines;Denton;J. Eng. Power,1978

3. An Improved Time-Marching Method for Turbomachinery Flow Calculation;Denton;ASME J. Eng. Gas Turbines Power,1983

4. Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades;He;ASME J. Turbomach.,1994

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3