Numerical Model of a Deep Surge Cycle in Low-Speed Centrifugal Compressor

Author:

Liśkiewicz Grzegorz1,Kulak Michał1,Sobczak Krzysztof1,Stickland Matthew2

Affiliation:

1. Institute of Turbomachinery, Lodz University of Technology, 90-924 Lodz, Poland

2. Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ Glasgow, Scotland

Abstract

Abstract In this article, a numerical model of the full surge cycle is presented for the low-speed centrifugal blower and compared with the experiment. Surge phenomenon is very dangerous for the compressor operation. Therefore, the possibility of studying its physics experimentally is strongly limited. The application of numerical methods allows one to safely analyze surge physics without causing risks to the operating crew. This article presents a description of the applied numerical method and exhaustive analysis of the flow structures observed at consecutive stages of the surge cycle. The surge is known to be very difficult to be simulated due to large timescale and region of influence. This study also shows the importance of an appropriate choice of the simulation definition and the boundary conditions. The presented method allows gathering information about features such as the regions of flow reversal, pressure distributions, pressure rise, cycle frequency, and others. All the aforementioned information provides important input to the efficient antisurge system design. The model has been validated by a comparison with the experimental data. Thanks to simulation, standardized antisurge solutions could be possibly replaced with more efficient protection schemes tailored to a given machine.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3