The Development and Testing of a Fixation Apparatus for Inducing the Coaptation of the Cardiac Atrioventricular Valves

Author:

Zhingre Sanchez Jorge D.1,Schinstock Emma A.1,Bateman Michael G.1,Iaizzo Paul A.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

As the prevalence of mitral and tricuspid valvular disease continues to grow with the aging population [1,2], there is a growing critical need to treat high mortality risk patients using minimally invasive and/or non-surgical percutaneous procedures. However, these transcatheter procedures, especially those aimed at repairing or replacing the mitral and tricuspid valves, are mostly still in development and/or early clinical testing. Catheter delivery, prosthesis fixation, and/or demonstrating device efficacy are major challenges currently being addressed [3,4]. Although in situ animal models can assess catheter systems with clinical imaging, direct visualization of tissue-device interactions in real human heart anatomies are desired. In vitro delivery and implantations of valvular prototypes in human heart specimens can be instrumental for accurate device testing and gaining important design insights. Such investigations can be performed on a pulsatile flow apparatus, utilizing perfusion fixed human hearts with mitral and/or tricuspid valves eliciting coaptation and relative function. The employment of endoscopic cameras provides direct visualization and can be coupled with echocardiography, providing novel insights relative to these transcatheter devices in a dynamic environment. However, these investigative approaches require appropriately fixed human heart specimens that will allow for dynamic valve movement. This study discusses the design, construction, and implementation of a novel fixation apparatus to promote the coaptation of the mitral and tricuspid valves in swine and fresh human heart specimen.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3