Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer

Author:

Colin Stéphane1

Affiliation:

1. Université de Toulouse; INSA, UPS, Mines Albi, ISAE; ICA (Institut Clément Ader), 135 avenue de Rangueil, F-31077 Toulouse, France e-mail:

Abstract

Accurate modeling of gas microvection is crucial for a lot of MEMS applications (microheat exchangers, pressure gauges, fluidic microactuators for active control of aerodynamic flows, mass flow and temperature microsensors, micropumps, and microsystems for mixing or separation for local gas analysis, mass spectrometers, vacuum, and dosing valves…). Gas flows in microsystems are often in the slip flow regime, characterized by a moderate rarefaction with a Knudsen number of the order of 10−2–10−1. In this regime, velocity slip and temperature jump at the walls play a major role in heat transfer. This paper presents a state of the art review on convective heat transfer in microchannels, focusing on rarefaction effects in the slip flow regime. Analytical and numerical models are compared for various microchannel geometries and heat transfer conditions (constant heat flux or constant wall temperature). The validity of simplifying assumptions is detailed and the role played by the kind of velocity slip and temperature jump boundary conditions is shown. The influence of specific effects, such as viscous dissipation, axial conduction and variable fluid properties is also discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3