Modeling and Computation for the High-Speed Rotating Flexible Structure

Author:

Huang Yong-an1,Yin Zhou-ping1,Xiong You-lun1

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R.C.; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R.C.

Abstract

This paper is presented to improve the modeling accuracy and the computational stability for a high-speed rotating flexible structure. The differential governing equations are derived based on the first-order approximation coupling (FOAC) model theory in the framework of the generalized Hamiltonian principle. The semi-discrete model is obtained by the finite element method, and a new shape function based on FOAC is established for the piezoelectric layers. To increase the efficiency, accuracy, and stability of computation, first, the second-order half-implicit symplectic Runge–Kutta method is presented to keep the computational stability of the numerical simulation in a long period of time. Then, the idea of a precise integration method is introduced into the symplectic geometric algorithm. An improved symplectic precise integration method is developed to increase accuracy and efficiency. Several numerical examples are adopted to show the promise of the modeling and the computational method.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3