An Evolutionary Soft-Add Topology Optimization Method for Synthesis of Compliant Mechanisms With Maximum Output Displacement

Author:

Liu Chih-Hsing1,Huang Guo-Feng2,Chen Ta-Lun2

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan e-mail:

2. Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

This paper presents an evolutionary soft-add topology optimization method for synthesis of compliant mechanisms. Unlike the traditional hard-kill or soft-kill approaches, a soft-add scheme is proposed in this study where the elements are equivalent to be numerically added into the analysis domain through the proposed approach. The objective function in this study is to maximize the output displacement of the analyzed compliant mechanism. Three numerical examples are provided to demonstrate the effectiveness of the proposed method. The results show that the optimal topologies of the analyzed compliant mechanisms are in good agreement with previous studies. In addition, the computational time can be greatly reduced by using the proposed soft-add method in the analysis cases. As the target volume fraction in topology optimization for the analyzed compliant mechanism is usually below 30% of the design domain, the traditional methods which remove unnecessary elements from 100% turn into inefficient. The effect of spring stiffness on the optimized topology has also been investigated. It shows that higher stiffness values of the springs can obtain a clearer layout and minimize the one-node hinge problem for two-dimensional cases. The effect of spring stiffness is not significant for the three-dimensional case.

Funder

"Ministry of Science and Technology, Taiwan"

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3