Optimal Damping in Circular Cylindrical Sandwich Shells With a Three-Layered Viscoelastic Composite Core

Author:

Kumar Ambesh1,Panda Satyajit2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

2. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India e-mail:

Abstract

In this work, the damping characteristics of circular cylindrical sandwich shell with a three-layered viscoelastic composite core are investigated. The new composite core is composed of the identical inclusions of graphite-strips which are axially embedded within a cylindrical viscoelastic core at its middle surface. The physical configuration of the composite core is attributed in the form of a cylindrical laminate of two identical monolithic viscoelastic layers over the inner and outer cylindrical surfaces of middle viscoelastic composite layer so that it is a three-layered viscoelastic composite core. A finite element (FE) model of the overall shell is developed based on the layerwise deformation theory and Sander's shell theory. Using this FE model, the damping characteristics of the shell are studied within an operating frequency range after configuring the size and circumferential distribution of graphite-strips in optimal manner. The numerical results reveal significantly improved damping in the sandwich shell for the use of present three-layered composite core instead of traditional single-layered viscoelastic core. It is also found that the three-layered core provides the advantage in achieving damping at different natural modes as per their assigned relative importance while it is impossible in the use of single-layered viscoelastic core.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3