St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence

Author:

Bons Jeffrey P.1

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson AFB, OH

Abstract

Experimental measurements of skin friction (cf) and heat transfer (St) augmentation are reported for low speed flow over turbine roughness models. The models were scaled from surface measurements taken on actual, in-service land-based turbine hardware. Model scaling factors ranged from 25 to 63, preserving the roughness height to boundary layer momentum thickness ratio for each case. The roughness models include samples of deposits, TBC spallation, erosion, and pitting. Measurements were made in a zero pressure gradient turbulent boundary layer at two Reynolds numbers (Rex = 500,000 and 900,000) and three freestream turbulence levels (Tu = 1%, 5%, and 11%). Measurements at low freestream turbulence indicate augmentation factors ranging from 1.1–1.5 for St/Sto and from 1.3–3.0 for cf /cfo (Sto and cfo are smooth plate values). For the range of roughness studied (average roughness height, k, less than 1/3rd the boundary layer thickness) the level of cf augmentation agrees well with accepted equivalent sandgrain (ks) correlations when ks is determined from a roughness shape/density parameter. This finding is not repeated with heat transfer, in which case the ks-based St correlations overpredict the measurements. Both cf and St correlations severely underpredict the effect of roughness for k+ < 70 (when ks, as determined by the roughness shape/density parameter, is small). A new ks correlation based on the rms surface slope angle overcomes this limitation. Comparison of data from real roughness and simulated (ordered cones or hemispheres) roughness suggests that simulated roughness is fundamentally different from real roughness. Specifically, ks values that correlate cf for both simulated and real roughness are found to correlate St for simulated roughness but overpredict St for real roughness. These findings expose limitations in the traditional equivalent sandgrain roughness model and the common use of ordered arrays of roughness elements to simulate real roughness surfaces. The elevated freestream turbulence levels produce augmentation ratios of 1.24 & 1.5 (St/Sto) and 1.07 & 1.16 (cf /cfo) compared to the Tu = 1% flow over the smooth reference plate. The combined effects of roughness and elevated freestream turbulence are greater than their added effects suggesting that some synergy occurs between the two mechanisms. Specifically, skin friction augmentation for combined turbulence and roughness is up to 20% greater than that estimated by adding their separate effects and 8% greater than compounding (multiplying) their separate effects. For heat transfer augmentation, the combined effect of turbulence and roughness is 5% higher than that estimated by compounding their separate effects at high freestream turbulence (Tu = 11%). At low turbulence (Tu = 5%), there is a negative synergy between the two augmentation mechanisms as the combined effect is now 13% lower than that estimated by compounding their separate effects.

Publisher

ASMEDC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3