Affiliation:
1. Royal Institute of Technology, Stockholm, Sweden
Abstract
The excitability of single rotor blade mode shapes due to the excitations by upstream stators in high-pressure turbine stages is subject of the present work. An evaluation of unsteady aerodynamic analyses of the stator-rotor interaction towards their sensitivity to the rotor blade mode shape is presented and applied. The unsteady aerodynamic analyses were performed at midspan sections with a well validated 2D/Q3D hybrid Euler/Navier Stokes non-linear flow solver (UNSFLO). The mode shape is parametrized by a torsion axis location in the plane of the blade section, which allows the construction of excitability maps as a function of 2D rigid body mode shapes. Excitability itself is derived from a generalized force analysis. The evaluation demonstrates the high sensitivity of excitability to the mode shape, which suggests that only small modifications in mode shape can significantly change the risk of blade mode excitation. It also highlights the central importance of the relative phase of unsteady blade pressure harmonic. Changes in axial gap can significantly modify the excitability and transform highly excited modes to less excited modes and vice versa. The variation of rotational speed (−5% to +10%) did not show remarkable changes in the mode excitability of the investigated rotor.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献