Integrated Micro-Turbine and Rotary-Kiln Pyrolysis System as a Waste to Energy Solution for a Small Town in Central Italy: Cost Positioning and Global Warming Assessment

Author:

Fantozzi Francesco1,Di Maria Francesco1,Desideri Umberto1

Affiliation:

1. Universita` di Perugia, Perugia, Italy

Abstract

Solid waste, and bio-residuals in general, are usually disposed of or alternatively converted into energy by means of medium to big scale power plants. For isolated communities, usually in protected natural areas, this turns into high energy and waste management costs because of their intrinsic distance from landfills and power plants. Considering also the electric dependency from the grid, small towns are commonly showing low sustainability. This paper focuses on both problems by evaluating the economic feasibility and the global warming contribution of an innovative micro scale waste to energy system based on a microturbine fuelled by waste pyrolysis gas. The plant reaches high efficiency, considering the scale, because of its high regenerative rate and is tailored to the waste disposal needs of Giano Dell’Umbria a small town in central Italy. The economic analysis was carried out, with the Net Present Value method, to determine the expected capital cost of the plant considering that the innovative technology utilized does not allow a reliable cost evaluation. The global warming contribution was calculated considering CO2 and CH4 avoided emission from landfilling and the better CO2 emission rate of such a technology with respect to the status quo. Results obtained show an acceptable cost positioning for the plant that makes it an interesting solution for distributed waste to energy systems. Executive projecting and construction of the proposed technology was funded and a pilot plant will be built and tested in 2002, in a laboratory facility of the University of Perugia.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3