Aerodynamic Evaluation of Double Annular Combustion Systems

Author:

Denman Paul A.1

Affiliation:

1. Loughborough University, Loughborough, Leicestershire, UK

Abstract

Legislation controlling the permitted levels of pollutant emissions from aircraft gas turbines has been an increasingly important design driver for the combustion system for some time, particularly with respect to oxides of nitrogen. This has lead to many suggestions for radical departures from the geometry of the classical combustor configuration involving, for example, lean premixed module technology, or staging (axially or radially) of combustor pilot and main zones. The optimum operation of any combustor also requires, however, appropriate and efficient distribution of compressor delivery air to the various flametube features (fuel injectors, dilution ports, for cooling and for air bleed purposes). Radial staging, leading to double annular combustor configurations, poses a particularly difficult challenge. The radial depth of the combustor increases to a level where the external aerodynamics of the combustor involves large flow turning after the pre-diffuser. Careful design is then needed to achieve acceptable levels of loss coefficient in the outer annulus. If these aspects are not properly addressed then inadequate penetration and mixing in the combustor interior can result, rendering low emissions performance impossible. This paper will report on the design, instrumentation and operation of a fully annular isothermal test facility, which has been developed specifically to enable this important issue of external flow quality in double annular combustor systems to be assessed. Representative inlet conditions to the combustion system are generated using a single stage axial compressor; modular construction enables quick and inexpensive changes to components of the combustor (pre-diffuser, cowl shape, liner port locations and geometrical details). Computerised rig control and data acquisition allows the collection of large amounts of high quality data. In addition to the calculation of overall system performance, it is then possible to identify flow mechanisms and loss-producing features in various zones and suggest appropriate modifications.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Compressor Unsteady Wakes on a Gas Turbine Combustor Flow;Journal of Engineering for Gas Turbines and Power;2022-10-14

2. Aerothermal Technologies for Low Emissions Combustors;Sustainable Development for Energy, Power, and Propulsion;2020-09-04

3. Volumetric PIV measurement for capturing the port flow characteristics within annular gas turbine combustors;Experiments in Fluids;2020-03-25

4. Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer;Journal of Engineering for Gas Turbines and Power;2012-06-11

5. Experimental and Computational Study of Hybrid Diffusers for Gas Turbine Combustors;Journal of Engineering for Gas Turbines and Power;2004-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3