Influence of Endwall Contouring on the Transonic Flow in a Compressor Blade

Author:

Hoeger M.1,Cardamone P.2,Fottner L.2

Affiliation:

1. MTU Aero Engines, Mu¨nchen, Germany

2. Universita¨t der Bundeswehr Mu¨nchen, Neubiberg, Germany

Abstract

Endwall contouring is successfully applied to compressor rotors to reduce boundary layer loading and to control endwall flow. Over-speeds resulting from large relative thickness and curvature of the rotor root section are compensated by the increase in open flow area which is generated by the concave hub shape. In transonic flow this area increase promotes higher Mach numbers and has a considerable impact on the shock system. To investigate endwall contouring experimentally at engine like flow conditions a novel cascade technique is introduced: A contracting endwall is designed in a way to enable homogenious flow conditions in Mach number and flow angle at the inlet plane of the cascade. For a given blade shape now several endwall contours may be investigated. Experiments are performed at the High Speed Cascade Windtunnel of the University of the Armed Forces, Munich for a linear and a concave endwall for a given blade section. Inlet Mach number level is around Ma1 = 0.9 at typical turning and profile thickness. The results show an increase in pre-shock Mach number and a change in shock pattern from an oblique shock for the linear contour to a normal shock for the concave one. Endwall contouring is demonstrated not only to influence the flow in the vicinity of the endwall but to extend up to a considerable distance in spanwise direction.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3