A Method for On-Line Temperature Calculation of Aircraft Engine Turbine Discs

Author:

Botto D.1,Zucca S.1,Gola M. M.1,Salvano S.2

Affiliation:

1. Politecnico di Torino, Torino, Italy

2. FIAT AVIO, Italy

Abstract

On-line calculation methods are currently used to evaluate stress and temperature of engine components in order to assess fatigue damage accumulation and residual life. On-line temperature calculation algorithms are necessary because temperature affects fatigue damage curves. Since it is neither possible nor necessary to compute on-line temperature on the whole component, a number of critical nodes are selected and their temperatures are evaluated with simplified algorithms. A well-known technique used to reduce the degrees of freedom of dynamic structural FE models is the component modes synthesis (CMS). By this technique the nodal degrees of freedom are divided into two sets: active and omitted. Active degrees of freedom are translated into the reduced model, while omitted ones are replaced by the most important modal shapes, in order to evaluate the dynamic behavior of the system. In the present work CMS has been applied to thermal transient analyses, in order to compute temperatures in low-pressure turbine discs critical areas. Due to the complexity of the geometry, the disc has been sub-structured into super-elements. The methodology has been tested on axi-symmetric FE model of a low-pressure turbine disc, comparing thermal transients performed by complete FE model with those evaluated by the sub-structured model.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear Elastic Fracture Mechanics Assessment of a Gas Turbine Vane;Materials;2022-07-04

2. A New Reduction Technique for Thermal Models with Fluid Networks;Journal of Thermal Stresses;2011-07

3. Proper Orthogonal Decomposition for Reduced-Order Thermal Solution in Hypersonic Aerothermoelastic Simulations;51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference<BR> 18th AIAA/ASME/AHS Adaptive Structures Conference<BR> 12th;2010-04-12

4. Neural Network Models for Usage Based Remaining Life Computation;Journal of Engineering for Gas Turbines and Power;2008-01-01

5. Reduced-Order Models for the Calculation of Thermal Transients of Heat Conduction/Convection FE Models;Journal of Thermal Stresses;2007-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3