Affiliation:
1. Rolls-Royce Deutschland Ltd. & Co. KG, Dahlewitz, Germany
2. Rheinisch-Westfa¨lische Technische Hochschule, Aachen, Germany
Abstract
Modern jet engines require very high cycle temperatures for efficient operation. In turn, cooling air is needed for the turbine, since the materials are not yet capable of taking these temperatures. Air is taken from the compressor for the purpose of cooling and turbine rim sealing, bypassing the main combustion circuit. Since this affects the efficiency of the engine in a negative manner, measures are taken to reduce the amount of air to an absolute minimum. These measures include the investigation of reducing pressure losses within the involved subsystems. One of these subsystems in the BR700 aeroengine series of Rolls-Royce is the vortex reducer device, which delivers bleed air to the secondary air system of the engine. The German government has set up a research project, aiming for an overall improvement of aeroengines. This program, Engine 3E, where 3E reflects Efficiency, Economy and Environment, concentrates on the main components of gas turbines. Programmes for the high pressure turbine and for the combustion chamber have been set up. The high pressure compressor has been identified as key component as well. A new 9-stage compressor is being developed at Rolls-Royce Deutschland to adress the respective needs. From the point of view of the secondary air system, the vortex reducer in this component plays a major role with respect to the efficient use of cooling and sealing air. Rolls-Royce Deutschland has performed CFD studies on the performance of different vortex reducer geometries, which currently are considered for incorporation into the future engine. The results of these investigations wil be converted into more simple design rules for proper reflection of the behaviour of this system for future designs. The paper presents the set up of the geometries, the applied boundary conditions as well as the final results. To tackle the difference between a high pressure compressor rig and a typical two-shaft engine, a dedicated investigation to assess the difference between a pure high pressure core without an internal shaft and a realistic high/low pressure shaft configuration has been carried out and is included in the paper. Recommendations to improve the design with respect to minimized pressure losses will be shown as well.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献