Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor: Part I — Influence of Diffuser Geometry on Stall Inception

Author:

Ferrara G.1,Ferrari L.1,Mengoni C. P.1,De Lucia M.1,Baldassarre L.2

Affiliation:

1. University of Florence, Florence, Italy

2. Nuovo Pignone – General Electric, Florence, Italy

Abstract

Extensive research on centrifugal compressors has been planned to define diffuser stall limits for a group of stages characterized by low blade-outlet-width-to-impeller-radius-ratio. Very little data is available on this centrifugal compressor family, especially for the last stage configuration. In addition, the most important stall diffuser prediction criteria barely cover this machine type. Many experimental tests have been planned to investigate several geometry variations. A simulated stage with a backward channel upstream, a 2D impeller with a vaneless diffuser and a constant cross section volute downstream constitute the basic geometry. Several diffuser geometries with different widths, pinch shapes, diffusion ratios were tested. Test results and conclusions are shown in the paper in terms of critical diffuser inlet flow angles, flow coefficients at stall inception and stage working ranges. The main task of the present work is to increase the knowledge and the amount of available data to characterize rotating stall phenomena, in particular for very narrow stages.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3