Combustor Turbine Interface Studies: Part 1 — Endwall Effectiveness Measurements

Author:

Colban W. F.1,Thole K. A.1,Zess G.2

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

2. Pratt and Whitney, East Hartford, CT

Abstract

Improved durability of gas turbine engines is an objective for both military and commercial aeroengines as well as for power generation engines. One region susceptible to degradation in an engine is the junction between the combustor and first vane given that the main gas path temperatures at this location are the highest. The platform at this junction is quite complex in that secondary flow effects, such as the leading edge vortex, are dominant. Past computational studies have shown that the total pressure profile exiting the combustor dictates the development of the secondary flows that are formed. This study examines the effect of varying the combustor liner film-cooling and junction slot flows on the adiabatic wall temperatures measured on the platform of the first vane. The experiments were performed using large-scale models of a combustor and nozzle guide vane in a wind tunnel facility. The results show that varying the coolant injection from the upstream combustor liner leads to differing total pressure profiles entering the turbine vane passage. Endwall adiabatic effectiveness measurements indicate that the coolant does not exit the upstream combustor slot uniformly but instead accumulates along the suction side of the vane and endwall. Increasing the liner cooling continued to reduce endwall temperatures, which was not found to be true with increasing the film-cooling from the liner.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3