Pressure-Side Bleed Film Cooling: Part II — Unsteady Framework for Experimental and Computational Results

Author:

Holloway D. Scott1,Leylek James H.1,Buck Frederick A.2

Affiliation:

1. Clemson University, Clemson, SC

2. GE Aircraft Engines, Cincinnati, OH

Abstract

This study examines the unsteady transonic pressure-side bleed film cooling on the trailing edge of a turbine blade and resolves the key mechanism responsible for the unusual relationship between film cooling effectiveness and increasing blowing ratio. This study is meant to show that unsteadiness is the key mechanism causing the unexpected results seen in the experiments. It is believed that this unsteadiness is highly dependent on the ratio of the lip thickness to slot height and the shedding frequencies of the passage and coolant vortices, which depend on blowing ratio. For low blowing ratio, hot passage flow has the dominant vortices. For high blowing ratio, coolant flow has the dominant vortices. For intermediate blowing ratio, the vortices have the potential to interact and cause the unusual behavior seen in pressure-side bleed film cooling. On the basis of these observations, experiments were repeated with pressure probes used to acquire the shedding frequencies at the effectiveness measurement location, which showed that unsteadiness was indeed present. Realistic engine conditions are considered with lip thickness to slot height ratio of 0.9 and mainstream Mach numbers of 0.7 at the coolant injection point and expanding to sonic conditions at the exit plane of the test section. Numerical results are from a 2-D mid-plane cut of the original geometry and a full-pitch 3-D model. Computations use high quality grids, high order discretization schemes, and an advanced turbulence model. The 3-D grid consists of 4.4 million cells and a high quality, unstructured, multi-topology mesh with resolution of the viscous sublayer and y+ < 1 on all surfaces. The simulations are fully converged, time accurate, and grid-independent. A novel methodology is used to introduce unsteadiness into the simulations. Effects of blowing ratio are examined, where blowing ratio is equal to 1.0 for 3-D and ranges from 0.3 to 1.5 for 2-D with a density ratio of 1.52. By performing an unsteady simulation, the unusual relationship between the effectiveness and blowing ratio is demonstrated in an unsteady framework.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3