Experiments in Active Stall Control of a Twin-Spool Turbofan Engine

Author:

Leinhos Dirk C.1,Scheidler Stephen G.1,Fottner Leonhard1,Grauer Frank2,Hermann Jakob3,Mettenleiter Manuel3,Orthmann Armin3

Affiliation:

1. Universita¨t der Bundeswehr Mu¨nchen, Neubiberg, Germany

2. MTU Aero Engines, Mu¨nchen, Germany

3. Ingenieurbu¨ro fu¨r Thermoakustik GmbH, Gro¨benzell, Germany

Abstract

The aerodynamic stability of aero engine compressors must be assured by active control systems in all operating conditions when the design surge margin is reduced in order to improve efficiency. While this has been investigated only on compressor rigs and single-spool engines in the past, this study focuses on the active control of the LARZAC 04 twin-spool turbofan. The objective is to demonstrate potential benefits, problems and solutions and also to provide a data base for numerical modeling and simulation of the capabilities of active control. Three different control strategies have been employed each of which refers to a specific operating condition and instability inception of the engine: The attenuation of disturbances travelling at rotor speed by modulated air injection into the LPC in the high speed range, the recovery of fully developed LPC stall at low speeds with a minimized amount of air and finally a constant air recirculation (HPC exit to LPC inlet) for stabilizing the compression system at different speeds based on the monitoring of a stability parameter. The injector is mounted upstream of the LPC and has ten circumferentially distributed nozzles for air injection into the tip region of the first rotor. The injected air which is either taken from an external source or from bleed air ports at the HPC exit is controlled by high-bandwidth direct-drive-valves. Disturbances travelling at rotor speed can be detected and attenuated with modulated air injection leading to a delay of stall onset. Fully developed rotating stall in the LPC was eliminated by asymmetric injection based on modal control strategies with less air than needed with constant air injection. By using online-stability-monitoring it is possible to initiate constant air recirculation when approaching the surge line, though the current design of the injector does not allow for large extension of the operating range for all spool speeds.

Publisher

ASMEDC

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3