On the Use of the Squire-Long Equation to Estimate Radial Velocities in Swirling Flows

Author:

Cervantes Michel J.1,Gustavsson L. Håkan1

Affiliation:

1. Division of Fluid Mechanics, Luleå University of Technology, SE-97187 Luleå, Sweden

Abstract

A method to estimate the radial velocity in swirling flows from experimental values of the axial and tangential velocities is presented. The study is motivated by the experimental difficulties to obtain this component in a draft tube model as evidenced in the Turbine-99 IAHR∕ERCOFTAC Workshop. The method uses a two-dimensional nonviscous description of the flow. Such a flow is described by the Squire-Long equation for the stream function, which depends on the boundary conditions. Experimental values of the axial velocities at the inlet and outlet of the domain are used to obtain the boundary conditions on the bounded domain. The method consists of obtaining the equation related to the domain with an iterative process. The radial velocity profile is then obtained. The method may be applied to flows with a swirl number up to about Sw=0.25. The critical value of the swirl number depends on the velocity profiles and the geometry of the domain. The applicability of the methodology is first performed on a swirling flow in a diffuser with a half angle of 3deg at various swirl numbers, where three-dimensional (3D) laser Doppler velocimeter (LDV) velocity measurements are available. The method is then applied to the Turbine-99 test case, which consists in a model draft tube flow where the radial inlet velocity was undetermined. The swirl number is equal to Sw=0.21. The stability and the convergence of the approach is investigated in this case. The results of the pressure recovery are then compared to the experiments for validation.

Publisher

ASME International

Subject

Mechanical Engineering

Reference12 articles.

1. Page, M., and Giroux, A. M., 2000, “Turbulent Computation in Turbine-99 Draft Tube,” CFD2K: 8th Annual Conference of the CFD Society of Canada, June 11–13, Montreal.

2. Engström, T. F., Karlsson, R. I., and Gustavsson, L. H., 2001, “The Second ERCOFTAC Workshop on Draft Tube Flow,” Älvekarleby, Sweden, June 18–20, http://www.luth.se/depts/mt/strl/turbine99/

3. Factorial Design Applied to CFD;Cervantes;ASME J. Fluids Eng.

4. Inviscid Swirling Flows and Vortex Breakdown;Buntine;Proc. R. Soc. London, Ser. A

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3