Redesign of Submerged Structures by Large Admissible Perturbations

Author:

Blouin Vincent Y.1,Bernitsas Michael M.2

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921

2. Department of Naval Architecture and Marine Engineering, The University of Michigan, Ann Arbor, MI 48109-2145

Abstract

The method of large admissible perturbations (LEAP) is a general methodology, which solves redesign problems of complex structures without trial and error or repetitive finite element analyses. When forced vibration constraints are incorporated into the redesign problem, damping and added mass due to the presence of fluid must be included into the model. The corresponding terms introduce theoretical and numerical difficulties, which are treated in this paper. The LEAP method has been implemented into a Fortran computer code RESTRUCT, developed at the University of Michigan. The redesign process is mathematically formulated as an optimization problem with nonlinear constraints, called general perturbation equations. First, a finite element analysis of the initial structure is executed. Then, the results are postprocessed by code RESTRUCT using an incremental scheme to find the optimum solution for the problem defined by the designer. Accurate determination of nonstructural terms, such as fluid added mass, is generally detrimental as far as forced response analysis is concerned. In redesign problems, however, simple but realistic models can be used. A simple transformation of the structural mass matrix is used to compute the added mass matrix and its dependency on the redesign variables. The presence of non-structural terms in the general perturbation equations requires the development of a new LEAP algorithm for solution of the optimization problem. A simple cantilever beam with 100 degrees of freedom is used to validate the fluid added mass model. The developed method and algorithm are then applied to a partially submerged 4,248 degree of freedom complex structure modeled with beam elements.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Postbuckled Spinal Structures for Airfoil Camber and Shape Control;AIAA Journal;2006-12

2. Integrated Redesign of Large-Scale Structures by Large Admissible Perturbations;Journal of Offshore Mechanics and Arctic Engineering;2003-10-01

3. Cognate Space Identification for Forced Response Structural Redesign;Journal of Offshore Mechanics and Arctic Engineering;2003-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3