A Review of Floating Platform Concepts for Offshore Wind Energy Generation

Author:

Thiagarajan K. P.1,Dagher H. J.2

Affiliation:

1. The University of Maine, Orono, ME 04469 e-mail:

2. The University of Maine, Orono, ME 04469

Abstract

Literature relating to offshore wind energy generation is produced at a significant rate as research efforts are diverted to the emerging area of future clean energy. This paper presents an overview of recent research in the specific area of floating offshore structure design for wind energy. Earlier literature has broadly grouped these platforms into three categories based on their source of stability: (1) ballast stabilized (low center of gravity), e.g., spar, (2) mooring stabilized, e.g., tension leg platform, and (3) buoyancy or water-plane stabilized, e.g., semisubmersible. These concepts were modifications of similar structures used in the offshore oil and gas industry. Recent papers have presented further improvements to these designs, including active ballasting and control systems. These are examined for stability and global performance behavior and ease of operability and maintenance. The paper also attempts to examine efforts to bring such concepts to fruition. This paper sets the stage for other papers in the Special Session on University of Maine/DeepCWind Consortium within the Offshore Renewable Energy Symposium at OMAE 2012, which are archived in the special section of the Journal of Offshore Mechanics and Arctic Engineering.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference31 articles.

1. Assessment of Offshore Wind Energy Resources for the United States,2010

2. Petroleum and Natural Gas Industries—Specific Requirements for Offshore Structures—Part 1: Met-Ocean Design and Operating Considerations;ISO 19901-1,2005

3. WindFloat: A Floating Foundation for Offshore Wind Turbines;J. Renewable Sustainable Energy,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3