Integrated Device for in Vivo Fine Needle Aspiration Biopsy and Elastic Scattering Spectroscopy in Preoperative Thyroid Nodules

Author:

Briggs John C.1,A’amar Ousama2,Bigio Irving2,Rosen Jennifer E.3,Lee Stephanie L.4,Sharon Andre56,Sauer-Budge Alexis F.52

Affiliation:

1. Fraunhofer USA–CMI, Brookline, MA 02446

2. Department of Biomedical Engineering, Boston University, Boston, MA 02215

3. Department of Surgery, Section of Surgical Oncology and Surgical Endocrinology, School of Medicine, Boston University, Boston, MA 02118

4. Department of Medicine, Section of Endocrinology, Diabetes, and Nutrition, School of Medicine, Boston University, Boston, MA 02118

5. Fraunhofer USA–CMI, Brookline, MA 02446;

6. Department of Mechanical Engineering, Boston University, Boston, MA 02215

Abstract

Thyroid nodules are a frequent clinical finding and the most common endocrine malignancy is thyroid cancer. The standard of care in the management of a patient with a thyroid nodule is to perform a preoperative fine needle aspiration (FNA) biopsy of the suspect nodule under ultrasound imaging guidance. In a significant percentage of the cases, cytological assessment of the biopsy material yields indeterminate results, the consequence of which is diagnostic thyroidectomy. Unfortunately, 75–80% of diagnostic thyroidectomies following indeterminate cytology result in benign designation by post-surgery histopathology, indicating potentially unnecessary surgeries. Clearly, the potential exists for the improvement in patient care and the reduction of overall procedure costs if an improved preoperative diagnostic technique was developed. Elastic scattering spectroscopy (ESS) is an optical biopsy technique that is mediated by optical fiber probes and has been shown to be effective in differentiating benign from malignant thyroid tissue in ex vivo surgical tissue samples. The goal of the current research was to integrate the ESS fiber optic probes into a device that can also collect cells for cytological assessment and, thus, enable concurrent spectroscopic interrogation and biopsy of a suspect nodule with a single needle penetration. The primary challenges to designing the device included miniaturizing the standard ESS fiber optic probe to fit within an FNA needle and maintaining the needle’s aspiration functionality. We demonstrate the value of the fabricated prototype devices by assessing their preliminary performance in an on-going clinical study with >120 patients. The devices have proven to be clinically friendly, collecting both aspirated cells and optical data from the same location in thyroid nodules and with minimal disruption of clinical procedure. In the future, such integrated devices could be used to complement FNA-based cytological results and have the potential to both reduce the number of diagnostic thyroidectomies on benign nodules and improve the surgical approach for patients with thyroid malignancies, thereby, decreasing healthcare costs and improving patient outcomes.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3