Hole Edge Metrology and Inspection by Edge Diffractometry

Author:

Lu Kuan1,Lee ChaBum1

Affiliation:

1. Texas A&M University J. Mike Walker ‘66 Department of Mechanical Engineering, , 3123 TAMU, College Station, TX 77843

Abstract

Abstract This article introduces a novel hole edge inspection and metrology technology by edge diffractometry, which occurs when light interacts with the hole edge. The proposed method allows for simultaneous characterization of hole part error and edge roughness conditions. Edge diffraction occurs as light bends at a sharp edge. Such a diffractive fringe pattern, the so-called interferogram, is directly related to edge geometry and roughness. Image-based diffractometry inspection technology was developed to capture the diffractive fringe patterns. The collected fringe patterns were analyzed through statistical feature extraction methods, and numerical results such as roundness index, concentricity, and via edge roughness (VER) were obtained. The results indicated that hole 1 had an average VER of 0.665 μm and a roundness index of 0.95, while hole 2 was measured an average VER of 0.753 μm and a roundness index of 0.96. Through-focus scanning optical microscopy (TSOM) was also utilized to perform three-dimensional characterization of hole features along the depth direction. As a result, the proposed method could characterize hole part error and evaluate its roughness conditions. This study showed the potential to be adapted for automatic optical inspection for advancing microelectronics and semiconductor packaging technology.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Digital Approach to via Edge Roughness Characterization and Quantification;International Journal of Precision Engineering and Manufacturing-Smart Technology;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3