Simplified Estimation of Creep-Rupture Strength for Notched Tensile Specimens of Austenitic Stainless Steels

Author:

Konish H. J.1

Affiliation:

1. Westinghouse Electric Corporation, Advanced Energy Systems Division, Madison, Pa. 15663

Abstract

A method for characterizing the creep-rupture strength of notched tensile specimens subjected to constant membrane loading has been developed. This method resolves the apparent contradiction between notch-strengthening and notch-weakening by employing the average von Mises equivalent stress on the net section of a notched specimen as its true rupture strength. The nominal net section equivalent stress can be determined by elastic analysis. Seven different notched specimen geometries of 304 and 316 stainless steel, assessed by this approach, exhibit varying degrees of notch-weakening at test temperatures from 1000°F (538°C) to 1500°F (816°C). The extent of notch-weakening is slightly dependent on specimen material and test temperature but the principal factor appears to be the degree to which the notch constrains inelastic flow on the net section. The effects of notch constraint on notch-weakening are well characterized by the peak stress triaxiality factor.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3