Response of SiCf/Si3N4 Composites Under Static and Cyclic Loading—An Experimental and Statistical Analysis

Author:

Mahfuz Hassan1,Maniruzzaman Md.1,Vaidya Uday1,Brown Timothy1,Jeelani Shaik1

Affiliation:

1. Materials Research Laboratory, Tuskegee University, Tuskegee, AL 36088

Abstract

Monotonic tensile and fatigue response of continuous silicon carbide fiber reinforced silicon nitride (SiCf/Si3N4) composites has been investigated. The monotonic tensile tests have been performed at room and elevated temperatures. Fatigue tests have been conducted at room temperature (RT), at a stress ratio, R = 0.1 and a frequency of 5 Hz. It is observed during the monotonic tests that the composites retain only 30 percent of its room temperature strength at 1600°C suggesting a substantial chemical degradation of the matrix at that temperature. The softening of the matrix at elevated temperature also causes reduction in tensile modulus, and the total reduction in modulus is around 45 percent. Fatigue data have been generated at three load levels and the fatigue strength of the composite has been found to be considerably high; about 75 percent of its ultimate room temperature strength. Extensive statistical analysis has been performed to understand the degree of scatter in the fatigue as well as in the static test data. Weibull shape factors and characteristic values have been determined for each set of tests and their relationship with the response of the composites has been discussed. A statistical fatigue life prediction method developed from the Weibull distribution is also presented. Maximum Likelihood Estimator with censoring techniques and data pooling schemes has been employed to determine the distribution parameters for the statistical analysis. These parameters have been used to generate the S-N diagram with desired level of reliability. Details of the statistical analysis and the discussion of the static and fatigue behavior of the composites are presented in this paper.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural Nanocomposites;Nanoengineering of Structural, Functional and Smart Materials;2005-08-29

2. Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites;Composite Structures;2005-01

3. Carbon nanoparticles/whiskers reinforced composites and their tensile response;Composites Part A: Applied Science and Manufacturing;2004-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3