Experimental Investigation of Thermal and Hydrodynamic Performances of a Partial Cross-Wavy Recuperator for Microturbine Applications

Author:

Du L. X.1,Yu P. Q.1,Zeng M.1,Wang Q. W.1

Affiliation:

1. Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

In order to improve the thermal efficiency of the microturbines, the compact and high efficient primary surface heat exchangers are mandatory. Recently, the thermal and hydrodynamic performances of a cross-wavy (CW) primary surface recuperator are experimentally investigated. The recuperator tested in the experiment is only 1/3 part of the whole recuperator which is designed for a 100kW microturbine. The experimental results have shown that the comprehensive thermal and hydrodynamic performances of the CW primary surface recuperator are competitive. The overall heat transfer coefficients and the pressure drops of the recuperator are tested in the experiments. And the range of the Reynolds number is from 150 to 400. The corresponding correlations between heat transfer coefficients and Reynolds numbers and the correlations between friction factors and Reynolds numbers are obtained. The Genetic Algorithm (GA) has been used to separate the coefficients of heat transfer correlations in the hot and cold sides of the partial recuperator by separating the overall heat transfer coefficient without experimentally knowing wall temperatures. In order to improve the hydrodynamic performance, the flow arrangement is also carefully designed. Furthermore, the experimental results have also confirmed that the flow distribution in the recuperator is quite uniform.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3