Affiliation:
1. Ben-Gurion University of the Negev, Beer-Sheva, Israel
Abstract
Phase-change materials (PCMs) can absorb large amounts of heat without significant rise of their temperature during the melting process. This effect may be utilized in thermal energy storage and passive thermal management. In order to enhance the rate of heat transfer into PCMs, various techniques have been suggested, like fins, metal and graphite-compound matrices, dispersed high-conductivity particles inside the PCM, and micro-encapsulation.
The present work deals with a hybrid PCM-air heat sink. The heat is dissipated on the heat sink base, and may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. The heat sink is made of aluminum 6061. Eicosane (C20H42, 96% purity, nominal melting temperature 36.7°C) is used as the PCM. In order to exclude the effect of sensible heating below the melting temperature, a controllable environment is used. The latter is created in a programmable forced-circulation oven.
A simplified thermal model is developed for a conservative estimation of temperature growth of the heat sink base. The results of this model are compared to the experimental results. The relative contributions of heat accumulation, both by latent and sensible heat, and of heat removal by air are presented and discussed.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献