Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings

Author:

Obot N. T.1,Trabold T. A.1

Affiliation:

1. Fluid Mechanics, Heat and Mass Transfer Laboratory, Department of Chemical Engineering, Clarkson University, Potsdam, NY 13676

Abstract

An experimental study of the effects of three jet-induced crossflow schemes on impingement heat transfer was made. The schemes, referred to as minimum, intermediate, and maximum crossflow correspond, successively, to unrestricted flow of spent air away from the target surface, restriction of the flow to leave through two opposite sides, and through one side of a rectangular impingement surface. The study covered jet Reynolds number, jet-to-surface spacing, and open area of 1000–21,000, 2–16 jet hole diameters, and 1–4 percent, respectively. The best heat transfer performance is obtained with the minimum scheme, intermediate and complete crossflow being associated with varying degrees of degradation. For a given blower power, heat transfer can be enhanced markedly by having greater number of jets over a fixed target area; notably when working with the minimum scheme at narrow jet-to-target spacings.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3