Calculation of Steady and Periodic Unsteady Blade Surface Heat Transfer in Separated Transitional Flow

Author:

Pacciani Roberto1,Rubechini Filippo1,Arnone Andrea1,Lutum Ewald2

Affiliation:

1. “Sergio Stecco” Department of Energy Engineering, University of Florence, via di Santa Marta, 3, 50139, Firenze, Italy

2. MTU Aero Engines GmbH, Dachauer Str. 665, 80995 Munchen, Germany

Abstract

In this work, aerothermal investigations of a highly loaded HP turbine blade are presented. The purpose of such investigations is to improve the physical understanding of the heat transfer in separated flow regions, with the final goal of optimizing cooling configurations for aerodynamically highly loaded turbine designs. The analysis is focused on the T120 cascade, that was recently tested experimentally in the framework of the European project AITEB-2 (Aero-thermal Investigation of Turbine Endwalls and Blades). Such a cascade has a relatively low solidity that is responsible for the formation of a laminar separation bubble on the suction side of the blade. Separated-flow transition and transonic conditions downstream of the throat result in a flow configuration that is very challenging for traditional RANS solvers. Moreover, the separated flow transition pattern was found to have a strong impact on both the aerodynamic and thermal aspects. The study was carried out using a novel three-equation, transition-sensitive, turbulence model. It is based on the coupling of an additional transport equation for the laminar kinetic energy to the Wilcox k - ω model. Such an approach allows one to take into account the increase of the nonturbulent fluctuations in the pretransitional and transitional region. Comprehensive aerodynamic and heat transfer measurements were available for comparison purposes. In particular, heat transfer measurements cover different Mach and Reynolds numbers, in both steady and periodic unsteady inflow conditions. A detailed comparison between measurements and computations is presented, and the impact of transition-related aspects on the surface heat transfer is discussed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3