Effect Mechanism of Ambient Air Parameters on the Thermal Performance for Cooling Towers

Author:

Zhang Lei1,Zhou Jun1,Zuo Simeng1,An Guangyao1,Lang Jinhua1,Yuan Wei1

Affiliation:

1. North China Electric Power University Department of Power Engineering, , Baoding, Hebei 071003 , China

Abstract

Abstract As the volume of natural draft wet cooling towers (NDWCTs) continues to increase, the influence of ambient air on the thermal performance of the NDWCT is not clear. Therefore, the main parameters such as gas–water ratio, circulating water temperature difference, and heat transfer in each zone were calculated, and the temperature field and humidity field were also investigated. The results showed that the ambient temperature had the greatest influence on the cooling capacity of the NDWCT and the increase of ambient temperature led the circulating water temperature difference decreases the most, which was 7.63 °C (74.15%). The increase of relative humidity and atmospheric pressure led to an increase in convective heat transfer and the decrease in evaporative mass transfer, while both the convective heat transfer and evaporative mass transfer reduced with the decreasing temperature. This study establishes a theoretical foundation for optimizing of the thermal performance and energy-saving design of NDWCTs.

Funder

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities, China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3