Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Abstract
Abstract
Experiments and finite element simulations are presented pertaining to the effective hardness and the mechanics of indentation and sliding contact on elastic-plastic layered media. Hardness measurements obtained from scratch experiments are presented for thin-film rigid disks with 30 nm carbon overcoats. Reproducible results are obtained for residual scratch depths greater than approximately 8 nm. A simple force balance model is used to calculate the effective hardness of the layered medium. Hardness values for the surface layer are calculated by fitting a relationship between the hardness, scratch geometry, and layer thickness to the experimental data. The experimental results are compared with three-dimensional finite element simulations of a rigid spherical indenter sliding over a half-space with a stiffer and harder surface layer. The finite element results are used to verify the hardness model applied to the experimental data and to provide insight into the observed experimental behavior in the context of the associated elastic-plastic deformation characteristics of the layered medium.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献