Effect of Engine Operating Conditions and Lubricant Rheology on the Distribution of Losses in an Internal Combustion Engine

Author:

Mufti Riaz A.1,Priest Martin1

Affiliation:

1. Institute of Engineering Thermofluids, Surfaces and Interfaces, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

With new legislation coming into place for the reduction in tail-pipe emissions, the OEMs are in constant pressure to meet these demands and have invested heavily in the development of new technologies. OEMs have asked lubricant and additive companies to contribute in meeting these new challenges by developing new products to improve fuel economy and reduce emissions. Modern low viscosity lubricants with new chemistries have been developed to improve fuel consumption. However, more work is needed to formulate compatible lubricants for new materials and engine technologies. In the field of internal combustion engines, researchers and scientists are working constantly on new technologies such as downsized engines, homogeneous charge compression ignition, the use of biofuel, new engine component materials, etc., to improve vehicle performance and emissions. Mathematical models are widely used in the automotive and lubricants industry to understand and study the effect of different lubricants and engine component materials on engine performance. Engine tests are carried out to evaluate lubricants under realistic conditions but they are expensive and time consuming. Therefore, bench tests are used to screen potential lubricant formulations so that only the most promising formulations go forward for engine testing. This reduces the expense dramatically. Engine tests do give a better picture of the lubricants performance but it does lack detailed tribological understanding as crankcase oil has to lubricant all parts of the engines, which do operate under different tribological conditions. Oil in an engine experiences all modes of lubrication regimes from boundary to hydrodynamic. The three main tribological components responsible for the frictional losses in an engine are the piston assembly, valve train, and bearings. There are two main types of frictional losses associated with these parts: shear loss and metal to metal friction. Thick oil in an engine will reduce the boundary friction but will increase shear losses whereas thin oil will reduce shear friction but will increase boundary friction and wear. This paper describes how engine operating conditions affect the distribution of power loss at component level. This study was carried out under realistic fired conditions using a single cylinder Ricardo Hydra gasoline engine. Piston assembly friction was measured using indicated mean effective pressure method and the valve train friction was measured using specially designed camshaft pulleys. Total engine friction was measured using pressure-volume diagram and brake torque measurements, whereas engine bearing friction was measured indirectly by subtracting the components from total engine friction. The tests were carried out under fired conditions and have shown changes in the distribution of component frictional losses at various engine speeds, lubricant temperatures, and type of lubricants. It was revealed that under certain engine operating conditions the difference in total engine friction loss was found to be small but major changes in the contribution at component level were observed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference6 articles.

1. Boundary Film Formation by Viscosity Index Improvers;Smeeth;Tribol. Trans.

2. Experimental and Theoretical Study of Instantaneous Engine Valve Train Friction;Mufti;ASME J. Tribol.

3. Experimental Evaluation of Engine Valve Train Friction Under Motored and Fired Conditions;Mufti;Tribol. Ser.

4. Patterson, D. J. , 1983, “Measurement of Piston and Ring Assembly Friction Instantaneous IMEP Method,” SAE Paper No. 830416.

5. Experimental Evaluation of Piston Assembly Friction under Motored and Fired Conditions in a Gasoline Engine;Mufti;ASME J. Tribol.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3