Combustor-Turbine Aerothermal Interaction in an Axial Turbine: Influence of Varied Inflow Conditions on Endwall Heat Transfer and Film Cooling Effectiveness

Author:

Werschnik Holger1,Hilgert Jonathan1,Bruschewski Martin1,Schiffer Heinz-Peter1

Affiliation:

1. Technische Universität Darmstadt, Darmstadt, Germany

Abstract

The Large Scale Turbine Rig (LSTR) at Technische Universit ät Darmstadt, Germany is used to examine the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage. The rig resembles a high pressure turbine and is scaled to low Mach number conditions. A baseline configuration with axial, low-turbulent inflow and an aerodynamic inflow condition of a state-of-the-art lean combustor is modeled by the means of swirl generators, whose clocking position towards the nozzle guide vane’s leading edge can be varied. A hub side coolant injection consisting of a double-row of cylindrical holes is implemented to examine the impact on endwall cooling. This paper is directed to study the effect of swirling inflow on heat transfer and film cooling effectiveness on the hub side endwall. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. This method allows for a high spatial resolution and in addition also yields adiabatic wall temperature data within the same measurement using a superposition approach. Aerodynamic measurements and numerical simulations complement the examination. The results for the baseline case show Nusselt numbers to increase significantly with higher coolant mass flux rates for the whole endwall area. With swirling inflow, in general, a decrease of film cooling effectiveness and an increase of Nusselt numbers is observed for identical mass flux rates in comparison to the baseline case. The difference varies depending on clocking position.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3