On the Effect of Axial Spacing Between Rotor and Stator Onto the Blade Vibrations of a Low Pressure Turbine Stage at Engine Relevant Operating Conditions

Author:

Marn Andreas1,Schönleitner Florian1,Mayr Mathias1,Selic Thorsten1,Heitmeir Franz1

Affiliation:

1. Graz University of Technology, Graz, Austria

Abstract

In order to achieve the ACARE targets regarding reduction of emissions, it is essential to reduce fuel consumption drastically. Reducing engine weight is supporting this target and one option to reduce weight is to reduce the overall engine length (shorter shafts, nacelle). However, to achieve a reduction in engine length, the spacing between stator and rotor can be minimised, thus changing the rotor blade excitation. Related to the axial spacing, a number of excitation mechanisms with respect to the rotor blading must already be considered during the design process. Based on these facts several setups have been investigated at different engine relevant operating points and axial spacing between the stator and rotor in the subsonic test turbine facility (STTF-AAAI) at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. In order to avoid upstream effects of supporting struts, these struts are located far downstream of the stage which is under investigation. For rotor blade vibration measurements, a novel telemetry system in combination with strain gauges is applied. To the best of the author’s knowledge, the present paper is the first report of blade vibration measurements within a rotating system in the area of low pressure turbines under engine relevant operating conditions. In addition, aerodynamic measurements including unsteady flow measurements have been conducted, but will not be presented in this paper. By analysing the flow field, aerodynamic excitation mechanisms can be identified and assigned to the blade vibration. However, this is not presented in this paper. Within this paper, the flow fields are analysed in both upstream and downstream of the turbine stage, visualised for two axial gaps and then compared to the forced response of the blading. Detailed structural dynamic investigations show critical modes during the operation which are identified by the telemetry measurements as well. Finally the influence of the axial spacing regarding the rotor blade excitation and vibration can be elaborated and is prepared to get a better understanding of basic mechanisms. The paper shows that reducing axial spacing is a promising option for reducing engine weight, but aeroelasticity must be carefully taken into account.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3