Analysis of High Pressure Turbine Nozzle Guide Vanes Considering Geometric Variations

Author:

Högner Lars1,Nasuf Alkin1,Voigt Paul1,Voigt Matthias1,Vogeler Konrad1,Meyer Marcus2,Berridge Christopher3,Goenaga Frederic3

Affiliation:

1. Technische Universität Dresden, Dresden, Germany

2. Rolls-Royce Deutschland Ltd & Co KG, Blankenfelde-Mahlow, Germany

3. Rolls-Royce plc, Derby, UK

Abstract

Geometric variations caused by manufacturing scatter can influence the aerodynamic performance of turbomachinery components. In case of nozzle guide vanes (NGVs), the capacity is of particular importance due to its influence on the entire engine behaviour, since often the narrowest cross section of the turbine, which limits the capacity, is found in the first NGV stage. Within this scope, the present paper illustrates different methods in order to quantify the impact of geometric variations of high pressure turbine (HPT) NGVs with respect to capacity change during the development process. At first, in the design phase, a parametric CAD model of the NGV can be used to perform an initial assessment of the effect caused by different geometric variations onto capacity. The results of this study can for example be used to set the tolerances for the subsequent manufacturing process. As soon as the first real hardware components become available, their geometry can nowadays be accurately captured using optical measurement techniques. Consequently, reverse engineering (RE) methods can be used to enable numerical assessment of geometric variability since manufacturing scatter is determined and incorporated into the subsequent CFD analysis. The process to perform this assessment is described in the second part of the paper and its results are compared to the initial CAD-based study. The investigation is conducted using an example of a state-of-the-art NGV stage provided by Rolls-Royce.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3