Effects of Oscillations in the Main Flow due to Thermo Acoustic Fields in a Gas Turbine Combustor on Film Cooling

Author:

Baek Seung Il1,Yavuzkurt Savas1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

The objective of this study is to understand the effects of oscillations in the main flow and the film cooling jets caused by the thermoacoustic fields formed in a gas turbine combustor on film cooling. As a first step, CFD simulations are performed for the case of steady mainstream and steady film cooling jets for validation of models and simulations and compared with other studies trying to predict adiabatic effectiveness under similar operating conditions. Based on the knowledge gained on the capability and limitations of different turbulence models for the steady simulations, simulations were extended to unsteady main flow and unsteady cooling jets. The unsteady simulations are performed using URANS-realizable k-ε turbulence model and LES-Smagorinsky-Lilly model. Initially, oscillations due to the combustion instabilities are approximated to be in sinusoidal form. For unsteady main flow and cooling jet simulations, results from the Seo et al. [3] experimental study were selected for comparison with CFD results. The effects of different frequencies (2, 16, 32 Hz) on film cooling are investigated. In each case, average blowing ratio was M=0.5. The results show that if the frequencies of the main flow and the cooling jet flow are increased, the adiabatic centerline effectiveness is decreased and the heat transfer coefficient is increased. Some representative results are: if the frequency of the main flow is increased from 0 Hz to 2 Hz, 16 Hz, or 32 Hz for L/D=1.6, the centerline effectiveness is decreased about 10%, 12%, or 47% and the spanwise-averaged heat transfer coefficient is increased around 1%, 2%, or 4% respectively. If the frequency of the mainstream and the jet flow is increased, the amplitude of the pressure difference between the mainstream and the plenum is increased and the amplitude of coolant flow rate oscillation is increased. Additionally, rectangular or triangular wave forms are used for mainstream and coolant jet flow in order to see the effect on the results and total 36 cases are simulated and effects of changing wave form are investigated. In each case, coolant flow rate was the same as sinusoidal wave forms. It seems like rectangular wave form for main flow at 2 Hz has a negative effect on film cooling performance whereas the same wave form for coolant jet at 32 Hz has a positive effect.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3