Affiliation:
1. KTH Royal Institute of Technology, Stockholm, Sweden
Abstract
The aspect of hub cavity purge has been investigated in a high-pressure axial low-reaction turbine stage. The cavity purge is an important part of the secondary air system, used to isolate the hot main annulus flow from cavities below the hub level. A full-scale cold-flow experimental rig featuring a rotating stage was used in the investigation, quantifying main annulus flow field impact with respect to purge flow rate as it was injected upstream of the rotor.
Five operating speeds were investigated of which three with respect to purge flow, namely a high loading case, the peak efficiency, and a high speed case. At each of these operating speeds, the amount of purge flow was varied across a very wide range of ejection rates.
Observing the effect of the purge rate on measurement plane averaged parameters, a minor outlet swirl decrease is seen with increasing purge flow for each of the operating speeds while the Mach number is constant. The prominent effect due to purge is seen in the efficiency, showing a similar linear sensitivity to purge for the investigated speeds. An attempt is made to predict the efficiency loss with control volume analysis and entropy production.
While spatial average values of swirl and Mach number are essentially unaffected by purge injection, important spanwise variations are observed and highlighted. The secondary flow structure is strengthened in the hub region, leading to a generally increased over-turning and lowered flow velocity. Meanwhile, the added volume flow through the rotor leads to higher outlet flow velocities visible in the tip region, and an associated decreased turning. A radial efficiency distribution is utilized, showing increased impact with increasing rotor speed.
Publisher
American Society of Mechanical Engineers
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献