Chemical Kinetic Models for Enhancing Gas Turbine Flexibility: Model Validation and Application

Author:

Güthe Felix1,Gassner Martin1,Bernero Stefano1,Meeuwissen Thiemo1,Wind Torsten1

Affiliation:

1. GE Power, Baden, Switzerland

Abstract

In recent years, market trends towards higher power generation flexibility are driving gas turbine requirements of operation at stable conditions and below environmental emission guarantees over a wide range of operating conditions, such as load, and for changing fuels. In order to achieve these targets, engine components and operation concept need to be optimized to minimise emissions (e.g. CO, NOx) and combustion instabilities, as well as to maximize component lifetime. Therefore the combination of field experience, experimental studies and theoretical modelling of flames with state of the art tools play a key role in enabling the development of such solutions. For many applications the relative changes of reactivity due to changes in operation conditions are important thus in this report a few examples are shown, where chemical kinetics simulations are used to determine the reactivity and to predict engine behaviour. The predicted trends are validated by correlating them to validation data from high pressure test rigs and real gas turbine operational data. With this approach the full operational range from highest reactivity (flashback) to lowest reactivity (blow out or CO emission increase) are covered. The study is focused on the sequential combustor (SEV) of reheat engines and addresses both the safety margins with respect to highly reactive fuels and achievable load flexibility with respect to part load CO emissions. The analysis shows that it is necessary to utilize updated kinetic mechanisms since older schemes have proved to be inaccurate. A version of the mechanism developed at NUI Galway in cooperation with Alstom and Texas A&M was used and the results are encouraging, since they are well in line with experimental test data and can be matched to GT conditions to determine, predict, and optimize their operational range. This example demonstrates nicely how a development over several years starting from fundamental basic research over experimental validation finally delivers a product for power plants. This report therefore validates the kinetic model in combination with the approach to use modelling for guidance of the GT development and extending it fuel capabilities. The GT24 / GT26 can not only be operated with H2 containing fuels, but also at very low part load conditions and with the integration of H2 from electrolysis (∼power to gas ∼PTG) the turndown capability can even be further improved. In this way the energy converted at low electricity prices can be stored and utilised at later times when it is advantageous to run the GT at lower loads increasing the overall flexibility. This development is well suited to integrate renewable energy at highly fluctuating availability and price to the energy provisioning by co-firing with conventional fuels.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3